

DELTA – Střední škola informatiky a ekonomie, s.r.o.

Ke Kamenci 151, PARDUBICE

MATURITNÍ PROJEKT

CLISYNC

Jméno a příjmení:​ ​ Miroslav BOŘEK

Pro školní rok:​ ​ 2024/2025

Třída:​ ​ ​ ​ 4.

Obor:​ ​ ​ ​ Informační technologie 18-20-M/01

Téma práce:​ ​ ​ Clisync: Vytvoření multiplatformní mobilní aplikace a ​
​ ​ ​ ​ implementace AI funkcí

Vedoucí práce:​ ​ Tomáš Pešek​

Způsob zpracování, cíle práce, pokyny k obsahu a rozsahu práce:

Cílem projektu bude vytvořit mobilní aplikaci za pomocí frameworku Expo pro službu
Clisync, aplikace bude vytvořena za pomoci technologie WebView a pokud bude potřeba
budou implementovány i nativní obrazovky. Úkolem bude také optimalizovat web aby byla
zajištěna správná funkčnost na mobilním zařízení. Dále bude zajištěna distribuce do
appstorů (android, ios) a AI funkce pro aplikaci (souhrn textového dokumentu, přepsání
zápisků do lepší a čitelnější podoby, text to speech a speech to text)

Stručný časový harmonogram (s daty a konkretizovanými úkoly):

09.2024 - Nastavení aplikace:

- Nastavení projektu Expo.

- Vytvoření WebView

10.2024 – Web a průzkum AI:

- Optimalizace a úpravy webu

- Výzkum AI modelů nejlepší pro použití v aplikaci.

11. 2024 - Průzkum a implementace AI:

- Implementace AI v aplikaci a na serveru.

12.2024 – Opravy chyb a distribuce:

- Testování a oprava zjištěných chyb.

- Optimalizace výkonu a vylepšení UI/UX.

- Distribuce na AppStore (ios, android).

Prohlašuji, že jsem maturitní projekt vypracoval samostatně, výhradně s použitím

uvedené literatury.

V Pardubicích 31.3.2025

Poděkování

Děkuji Ing. Tomášovi Peškovi za studijní materiál a odborné vedení při zpracovávání

maturitního projektu. Byl jste skvělým mentorem, vaše rady a nápady mi pomohly rozvinout

projekt správným směrem. Dále děkuji Jakubovi Kluckému a Denisovi Matsenko za

vzájemnou pomoc při řešení všech komplikací a funkcí aplikace. Nakonec bych chtěl

poděkovat rodině a přátelům za morální podporu během celého projektu. Bez jejich podpory

by to nebylo možné.

Anotace

Tato závěrečná práce přináší pohled do vývoje mobilní aplikace a implementace AI funkcí

pro zjednodušení používání. Dokumentace je rozdělena do jednotlivých kapitol, kde jsou

popsány postupy při vývoji takové aplikace. Jako výstup této práce je aplikace pro

management klientů s názvem Clisync.

Klíčová slova

AI, Expo, React Native, NextJS, OpenAI

Obsah

1. Úvod..9
2. Použité technologie ve společné části.. 10

2.1 Visual studio code...10
2.2 Miro...10
2.3 React... 11
2.4 NextJS... 11
2.5 Server side rendering..12
2.6 Vercel..13
2.7 Tailwind CSS..13
2.8 Daisy UI... 14

3. Mobilní aplikace.. 15
3.1 Výběr technologie... 15

3.1.1 Nativní aplikace.. 15
3.1.2 React Native..15
3.1.3 Flutter... 16
3.1.4 Expo... 16

3.2 Způsob Implementace...17
3.2.1 Klasická aplikace.. 17
3.2.2 WebView..18

3.3 App Store a Google Play..19
3.3.1 Požadavky na App Store (Apple)...20
3.3.2 Požadavky na Play Store (Google).. 20
3.3.3 Důvody neúspěšné publikace aplikace..21
3.3.4 Alternativní způsoby distribuce.. 21

4. AI ve webové aplikace..22
4.1 Výběr modelu..22

4.1.1 Důležitá kritéria..22
4.1.2 Poskytovatelé a možnosti...23

4.2 Self-hosting..23
4.2.1 Otevřené AI modely...24
4.2.2 Infrastruktura..24

4.3 Bezpečnost...26
4.4 Implementace...27

4.4.1 Souhrn dokumentu... 27

4.4.2 Přepis zápisků..28
4.4.3 Text to speech.. 28
4.4.4 Speech to text...29

5. Závěr.. 30

1. Úvod
Cílem tohoto projektu je vytvořit mobilní rozhraní pro aplikaci Clisync, která pomůže

psychologům zefektivnit jejich administrativní práci a organizaci poznámek. Tradiční

způsoby zaznamenávání informací o klientech často nejsou jednotné, a mnoho psychologů

uchovává data lokálně bez zálohování, což může vést k jejich ztrátě nebo neorganizovanosti.

Tento projekt si klade za cíl nabídnout digitální řešení, které umožní snadnou správu

zápisků a zároveň zajistí vysokou úroveň zabezpečení.

Dalším cílem je integrace umělé inteligence pro zpracování textu, která umožňuje sumarizaci

zápisků, úpravy textu a jeho převod na řeč. Implementace AI se zaměřuje na praktické

využití při práci s textem a je navržena tak, aby nenarušovala soukromí uživatelů. Z toho

důvodu byla původně plánovaná implementace self-hosted AI řešení, které by

minimalizovalo přenos citlivých údajů mimo kontrolované aplikační prostředí. Tento přístup

byl zvolen s cílem zajistit maximální kontrolu nad zpracováním dat a snížit závislost na

externích službách, což je klíčové pro důvěryhodnost aplikace v profesionálním prostředí

zdravotní péče.

V teoretické části se závěrečná práce zaměřuje na výběr technologie pro mobilní aplikaci,

kde jsou porovnány různé přístupy k vývoji a architektury aplikace. Součástí teoretické

analýzy je také výběr AI modelu, přičemž jsou zhodnoceny dostupné možnosti, včetně

hostovaných a self-hosted řešení, a zohledněna kritéria jako výkon, bezpečnost a

kompatibilita. Nakonec se závěrečná práce věnuje samotné implementaci AI funkcí, kde jsou

rozebrány způsoby integrace modelu do aplikace a jeho praktické využití pro zpracování

textu.

9

2. Použité technologie ve společné části
Tato část pojednává o využitých technologiích ve společné části závěrečné práce, tzn.

webové aplikaci, která se zároveň využívá i v mobilní aplikaci pomocí technologie webview.

2.1 Visual studio code
Visual Studio Code [1] je open-source editor pro úpravu kódu vyvinutý společností

Microsoft, dostupný pro operační systémy Windows, mac OS a Linux. Jedná se o výkonný a

flexibilní nástroj, který usnadňuje tvorbu, úpravu a správu kódu. Podporuje mnoho

programovacích jazyků, čímž se stával univerzálním řešením. Jednou z jeho klíčových

vlastností je IntelliSense, což je funkce automatického doplňování kódu, která nabízí chytré

návrhy na základě analýzy projektu. Kromě toho obsahuje integrovaný terminál, který

umožňuje spouštět příkazy přímo z editoru, a vestavěné nástroje pro ladění, které pomáhají

identifikovat a řešit chyby přímo v kódu. Díky podpoře rozšíření lze přidávat nové funkce,

například lintování, a podporu pro specifické technologie a frameworky. VS Code je rovněž

dobře integrován s Gitem GitHubem, což usnadňuje spolupráci v týmu, která byla pro náš

projekt potřeba.

2.2 Miro
Miro [2] je online platforma pro vizuální spolupráci, která umožňuje týmům pracovat

společně v reálném čase nebo asynchronně. Je známá především jako digitální whiteboard,

který nabízí širokou škálu nástrojů pro brainstorming, plánování, designování a řízení

projektů. Uživatelé mohou vytvářet diagramy, mapy myšlenek, vývojové diagramy,

wireframy a mnoho více. Díky intuitivnímu rozhraní a snadnému sdílení umožňuje

spolupráci, a to i na dálku. Aplikace je využívána například vývojáři nebo designery. Její

klíčovou vlastností je neomezené plátno, na kterém lze vizualizovat složité nápady,

strukturovat informace a propojit různé formáty obsahu, což podporuje kreativitu a

týmovou produktivitu.

10

2.3 React
React [3] je open-source JavaScriptová knihovna vyvinutá společností Meta pro tvorbu

uživatelských rozhraní. Umožňuje jednoduše a efektivně vytvářet webové aplikace.

Především jsem potřeboval nástroj, který umožní vytvářet uživatelské rozhraní efektivně,

flexibilně a škálovatelně. React nabízí komponentový přístup, což umožňuje rozdělit aplikaci

na menší, znovupoužitelné části, díky tomu je vývoj nejen rychlejší, ale i jednodušeji

udržitelný přehledně.

Dalším důvodem je Virtuální DOM [4], který zajišťuje výkon aplikace. React provádí

aktualizace uživatelského rozhraní pouze tam, kde došlo ke změnám, což je pro moji

aplikaci, která zpracovává obsah dynamicky, jako například můj kalendář nebo seznam

klientů. Deklarativní přístup Reactu pak usnadňuje definici toho, jak má uživatelské rozhraní

vypadat v různých stavech, což je ideální pro práci s komplexními daty a různými scénáři
interakce uživatelů.

Jeden z hlavních důvodů proč jsem využil react jsou react hooky Díky hookům, jako je

useState nebo useEffect, jsem mohl pracovat se stavem a vedlejšími efekty aplikace

jednoduše a bez nutnosti psát třídy, což zrychluje a zpříjemňuje vývoj.

2.4 NextJS
Next.js [5] je framework postavený nad Reactem, který rozšiřuje možnosti vývoje mé

webové aplikace. Nabízí Server-Side Rendering (SSR) a Static Site Generation (SSG) [6], což

vede ke zrychlení načítání stránek a lepší SEO optimalizaci. Například dynamické stránky,

jako je seznam klientů nebo kalendář, mohou být vykresleny rychleji a vyhledávače je

snadněji indexují. Automatický routing na základě struktury souborů v projektu

zjednodušuje správu aplikací, zatímco API Routes umožňuje vytvářet backendové funkce

přímo v aplikaci bez potřeby samostatného serveru.

Next.js také nabízí Image Optimization, která automaticky optimalizuje velikost a formát

obrázků, čímž zlepšuje výkon aplikace a uživatelskou zkušenost, zejména na mobilních

zařízeních. Kromě toho obsahuje Middleware, které umožňuje provádět operace nad dotazy

a odpověďmi ještě předtím, než jsou zpracovány ve stránkách aplikace. To je užitečné

například pro autentifikaci nebo přesměrování uživatelů na základě jejich stavu.

11

Další významnou funkcí Next.js je Incremental Static Regeneration (ISR), což umožňuje

aktualizovat staticky generované stránky bez nutnosti rebuildu celé aplikace. Díky tomu

mohou být statické stránky průběžně aktualizovány novými daty, aniž by bylo nutné čekat

na kompletní nasazení nové verze webu.

Next.js podporuje také Edge Functions, které umožňují běh serverových funkcí přímo na

okraji sítě (Edge Network), což vede k extrémně nízké latenci a rychlému zpracování

požadavků. To je ideální například pro personalizaci obsahu nebo A/B testování.

Framework také nabízí Built-in Internationalization (i18n), což usnadňuje správu

vícejazyčných aplikací bez nutnosti externích knihoven. Vývojářům poskytuje i Automatic

Code Splitting, čímž minimalizuje velikost načtených JavaScriptových souborů a zlepšuje

výkon.

Protože je postavený na Reactu, poskytuje všechny jeho výhody, včetně hooků,

komponentního přístupu a Virtuálního DOMu, ale přidává pokročilé funkce bez nutnosti

složité konfigurace. Navíc má built-in podporu pro TypeScript, což zjednodušuje vývoj a

zlepšuje stabilitu kódu. Podporuje také moderní nástroje jako Webpack 5, SWC pro rychlou

kompilaci a Rust-based minifikaci kódu.

Použití Next.js je ideální volbou, pokud hledáte robustní řešení pro vývoj rychlých,

škálovatelných a optimalizovaných aplikací s vysokým výkonem a výbornou podporou pro

SEO.

2.5 Server side rendering
Server-Side Rendering [6] přináší několik zásadních výhod, zejména pro webové aplikace,

které vyžadují vysoký výkon, rychlé načítání obsahu a optimalizaci pro vyhledávače. SSR

předrenderuje obsah na serveru, takže uživatel dostane kompletní HTML stránku ještě před

načtením JavaScriptu. To znamená, že uživatelé uvidí obsah téměř okamžitě, což zlepšuje

uživatelskou zkušenost. Je to zvláště výhodné pro aplikace s obsahem, který se často mění,

jako jsou e-shopy, zpravodajské portály nebo dynamické tabulky dat. Dalším důvodem pro

použití SSR je lepší SEO. Vyhledávače upřednostňují weby, které servírují plný obsah ve

formě HTML, což usnadňuje indexaci a zlepšuje viditelnost webu. SSR také umožňuje

generovat personalizované stránky přímo na serveru, například zobrazení uživatelsky

specifických dat nebo přizpůsobení obsahu na základě lokalizace či zařízení. Další výhodou

12

je lepší výkon na pomalejších zařízeních, protože většina zátěže je přesunuta na server. SSR

lze navíc kombinovat s dalšími strategiemi, jako je Static Site Generation pro statické

stránky nebo Client-Side Rendering pro interaktivní prvky. Tato flexibilita umožňuje

optimalizovat aplikaci pro různé scénáře, například pro real-time aktualizace obsahu, kdy

server načte aktuální data při každém požadavku, a uživatel tak vždy dostane nejnovější

verzi. SSR je vhodné, pokud potřebujete lepší SEO, pracujete s dynamickým obsahem, chcete

snížit dobu načítání stránky nebo podporovat méně výkonná zařízení.

2.6 Vercel
Vercel [7] je cloudová platforma pro nasazování a škálování moderních webových aplikací.

Zaměřuje se na rychlost, jednoduchost a podporu vývojářů

Používání platformy Vercel přináší řadu výhod, které usnadňují vývoj a nasazení webových

aplikací, zejména těch postavených na frameworku Next.js. Vercel je navržen tak, aby

vývojáři mohli rychle nasazovat své projekty bez složité konfigurace serverů nebo

infrastruktury. Jednou z hlavních výhod je možnost nastavení a automatického nasazení

z GitHub repozitářů. Při každé změně kódu je aplikace automaticky nasazena na produkční i

testovací prostředí. Dalším důvodem je vysoký výkon a optimalizace pro koncové uživatele.

Vercel poskytuje globální síť CDN, která zajišťuje rychlé načítání stránek po celém světě.

Platforma také nativně podporuje server-side rendering a static site generation, což je

perfektní kombinace pro aplikace založené na Next.js. Navíc nabízí funkce jako edge

middleware, které umožňují přizpůsobení obsahu přímo na okraji sítě, čímž se zlepšuje

uživatelská zkušenost. Velkou výhodou je také jednoduchost a přívětivé rozhraní, které

umožňuje monitorovat stav nasazení, výkon aplikace nebo správu domén. Vercel navíc

podporuje týmovou spolupráci, což znamená, že více vývojářů může pracovat na jednom

projektu efektivněji. Pro mě je Vercel ideálním nástrojem díky své jednoduchosti, výkonu a

bezproblémové integraci s moderními webovými technologiemi.

2.7 Tailwind CSS
Tailwind CSS [8] je framework na stylování aplikací který používá utility přístup. Místo psaní

vlastních tříd umožňuje používat předdefinované utility classes přímo v html. Tyto třídy

reprezentují konkrétní stylové vlastnosti, jako jsou barvy, mezery, velikosti fontů, zarovnání

13

nebo stíny. Tailwind také obsahuje nástroj pro optimalizaci, který zajišťuje, že ve výsledném

balíčku jsou zahrnuty pouze třídy, které reálně používáte, což zlepšuje výkon aplikace.

2.8 Daisy UI
Daisy UI [9] je plugin který poskytuje vlastní komponenty vytvořené pomocí frameworku

Tailwind CSS tím zajišťuje možnost znovu použít jednotlivé komponenty a zároveň zachová

možnost plně upravit přidáním vlastních Tailwind CSS tagů. Toto bylo klíčové, aby k tvorbě

aplikace nebyl potřeba design, ale mohl jsem ji vytvořit sám bez bližších znalostí grafického

designu.

14

3. Mobilní aplikace

3.1 Výběr technologie
Při vývoji mobilní aplikace je klíčové zvolit vhodnou technologii, která umožní efektivní

vývoj, údržbu a rozšiřitelnost aplikace. Každý přístup má své výhody a nevýhody, které

ovlivňují výkon, vývojovou náročnost a kompatibilitu s různými platformami. V této kapitole

budou představeny možnosti mezi kterými se rozhodovalo a jejich porovnání.

3.1.1 Nativní aplikace

Nativní aplikace [10] jsou vyvíjeny specificky pro jednotlivé platformy, například pomocí

Swift pro iOS a Kotlin/Java pro Android. Tento přístup zajišťuje nejlepší výkon, hlubokou

integraci s hardwarem a optimalizované uživatelské prostředí.

Výhody:

●​ Nejvyšší výkon a plynulost

●​ Plná podpora nativních API a funkcí zařízení

●​ Možnost využití nejnovějších funkcí operačního systému

Nevýhody:

●​ Vyšší náklady na vývoj (nutnost dvou verzí aplikace)

●​ Dlouhá vývojová doba

●​ Náročnější údržba dvou kódových bází

3.1.2 React Native

React Native [11] je framework vyvinutý společností Meta (Facebook) v roce 2015. Je

založen na JavaScriptu a Reactu, což umožňuje vývoj mobilních aplikací s využitím

webových technologií. Kód je většinou sdílený mezi platformami, ale některé nativní prvky

je nutné implementovat zvlášť.

15

Výhody:

●​ Možnost sdílení kódu mezi iOS a Androidem

●​ Široká komunita a podpora knihoven

●​ Snadná integrace s webovými technologiemi

Nevýhody:

●​ Nižší výkon oproti nativním aplikacím

●​ Složitější podpora některých nativních funkcí

●​ Čas od času problémy s kompatibilitou knihoven

3.1.3 Flutter

Flutter [12] je framework vyvinutý Googlem v roce 2017. Používá programovací jazyk Dart

a vlastní vykreslovací engine, což umožňuje jednotný vzhled aplikací napříč platformami.

Flutter generuje nativní kód, což zajišťuje lepší výkon než React Native.

Výhody:

●​ Vysoký výkon díky vlastním grafickým komponentám

●​ Stejný vzhled na všech platformách

●​ Rychlý vývoj díky Hot Reload

Nevýhody:

●​ Menší komunita než React Native

●​ Větší velikost aplikace

●​ Použití méně rozšířeného jazyka Dart

3.1.4 Expo

Expo [12] je framework postavený na React Native, který usnadňuje vývoj mobilních

aplikací odstraněním složité konfigurace. Poskytuje předpřipravené API pro běžné funkce,

jako jsou kamery, push notifikace a správa souborů.

16

Výhody:

●​ Rychlé nasazení a snadná údržba

●​ Možnost práce bez potřeby nativního vývojového prostředí

●​ Integrované nástroje pro testování a publikaci

Nevýhody:

●​ Omezenější přístup k některým nativním funkcím (nutnost od-ejectování)

●​ Menší flexibilita oproti čistému React Native

●​ Závislost na ekosystému Expo

Expo bylo zvoleno pro tento projekt z několika důvodů:

●​ Zjednodušení vývoje – umožňuje rychlé prototypování bez potřeby konfigurace

nativního kódu

●​ Podpora webview – snadná integrace s webovou aplikací Clisync

●​ Kompatibilita – snadná distribuce aplikace přes Expo Go bez nutnosti sestavení

APK/IPA při testování

3.2 Způsob Implementace
Při vývoji mobilní aplikace existuje několik přístupů k implementaci uživatelského rozhraní

a logiky. Každý způsob má své výhody a nevýhody v závislosti na požadavcích na výkon,

flexibilitu a vývojovou rychlost. V této části jsou popsány dva hlavní způsoby – klasická

aplikace a WebView – a jejich porovnání z hlediska použitelnosti v projektu Clisync.

3.2.1 Klasická aplikace

Klasická mobilní aplikace znamená, že veškerá funkcionalita, uživatelské rozhraní a logika

běží přímo v rámci nativního nebo hybridního kódu aplikace. Data mohou být získávána přes

API, ale samotné vykreslování, navigace i interakce se uživatelem probíhají v prostředí

mobilní aplikace.

17

Použití:

●​ Nativní aplikace (Swift pro iOS, Kotlin/Java pro Android)

●​ Hybridní aplikace (React Native, Flutter)

●​ Aplikace, které vyžadují hlubokou integraci s hardwarem zařízení (např. kamera,

Bluetooth)

Výhody:

●​ Maximální výkon a optimalizace pro konkrétní platformu

●​ Možnost přímé interakce s nativními API a hardwarem zařízení

●​ Lepší uživatelský zážitek díky hladší animaci a plynulejší odezvě

Nevýhody:

●​ Náročnější vývoj a údržba – nutnost spravovat zvlášť verze pro iOS a Android, pokud

není použit hybridní framework

●​ Delší vývojový cyklus a vyšší náklady

●​ Složitější publikace aktualizací – změny často vyžadují nový build a schválení na App

Store nebo Google Play

3.2.2 WebView

WebView [13] je komponenta, která umožňuje zobrazování webových stránek uvnitř
mobilní aplikace. Aplikace tedy funguje jako obal (shell) pro webovou aplikaci, která běží v

prostředí mobilního prohlížeče integrovaného do aplikace. Tato technologie byla vybrána

pro projekt Clisync, protože umožňuje sdílení kódu mezi webovou a mobilní verzí aplikace a

usnadňuje vývoj a údržbu.

Použití:

●​ Mobilní aplikace zobrazující existující webovou platformu

●​ PWA (Progressive Web Apps) v mobilním prostředí

●​ Aplikace, které nevyžadují složité nativní interakce

18

Výhody:

●​ Rychlejší vývoj – aplikace využívá existující webovou platformu, není nutné vytvářet

samostatné UI pro mobilní zařízení

●​ Jednotný kód pro více platforem – změny ve webové aplikaci se automaticky

projeví i v mobilní aplikaci

●​ Jednodušší aktualizace – většinu změn lze provádět na straně serveru, bez nutnosti

aktualizace aplikace v App Store nebo Google Play

●​ Snížení nákladů na vývoj – odpadá nutnost vytvářet samostatnou nativní aplikaci

Nevýhody:

●​ Nižší výkon oproti nativním aplikacím – WebView není tak optimalizované jako

nativní UI komponenty

●​ Omezený přístup k nativním funkcím – některé pokročilé funkce zařízení mohou

vyžadovat speciální mosty mezi WebView a nativním kódem

●​ Závislost na dostupnosti internetu – pokud webová aplikace není navržena pro

offline režim, nemusí být aplikace funkční bez připojení

Pro tento projekt byla zvolena technologie WebView, protože umožňuje efektivní vývoj s

minimální duplikací kódu mezi webovou a mobilní verzí aplikace Clisync. Díky frameworku

Expo je implementace WebView jednoduchá a umožňuje budoucí rozšiřování funkcionality

podle potřeb uživatelů.

3.3 App Store a Google Play
Publikace mobilní aplikace do oficiálních obchodů App Store (iOS) a Google Play (Android)

je proces, který podléhá přísným pravidlům a schvalovacím procesům. Přestože distribuce

aplikace přes tyto platformy poskytuje největší dosah k uživatelům, může být tento proces

komplikovaný a časově náročný.

19

3.3.1 Požadavky na App Store (Apple)

Apple má velmi přísná pravidla pro aplikace distribuované přes App Store [14]. Aplikace

musí splňovat jak technické, tak obsahové požadavky, jinak může být zamítnuta. Mezi hlavní

problémy při vydávání patří:

●​ Nedostatečná funkcionalita – Apple zamítá aplikace, které považuje za neúplné,

příliš jednoduché nebo sloužící pouze jako obal pro webovou stránku. WebView

aplikace jsou často označovány jako „minimálně užitečné“.

●​ Omezené používání WebView – Aplikace, které se spoléhají na WebView bez

přidané nativní funkcionality, mohou být odmítnuty. Apple preferuje aplikace s

plnohodnotným nativním zážitkem.

●​ Chybějící metody přihlášení – Apple vyžaduje, aby aplikace podporovaly „Sign in

with Apple“, pokud nabízejí jiné metody přihlášení (Google, Facebook).

●​ Platební systém – Aplikace nabízející placené služby nebo předplatné musí používat

Apple In-App Purchases, což znamená vyšší poplatky (až 30 %).

●​ Bezpečnostní a výkonové požadavky – Aplikace musí být stabilní, nesmí nadměrně

využívat systémové prostředky a musí odpovídat bezpečnostním standardům.

3.3.2 Požadavky na Play Store (Google)

Google Play je obecně méně přísný než App Store [15], ale stále má určité požadavky, které je

třeba splnit. Hlavní problémy při schvalování aplikace zahrnují:

●​ Kvalita aplikace – Google kontroluje, zda aplikace funguje bez chyb a neobsahuje

nekompletní nebo testovací funkce.

●​ Obsahové zásady – Aplikace nesmí obsahovat zakázaný obsah (např. dezinformace,

podvodné chování, citlivá data uživatelů bez souhlasu).

●​ Použití WebView – Podobně jako Apple, Google může odmítnout aplikace, které

pouze zobrazují webovou stránku bez přidané hodnoty.

●​ Zabezpečení a ochrana osobních údajů – Aplikace musí dodržovat zásady ochrany

soukromí, jako je správné nakládání s uživatelskými daty a požadování pouze

nezbytných oprávnění.

20

3.3.3 Důvody neúspěšné publikace aplikace

V případě této aplikace nebylo možné vydání na App Store ani Google Play kvůli nesplnění

některých klíčových požadavků:

●​ WebView aplikace bez nativní funkcionality – Hlavním důvodem zamítnutí je, že

aplikace funguje jako pouhý obal pro webovou aplikaci Clisync bez dalších nativních

funkcí. To nesplňuje požadavky App Store ani Google Play.

●​ Nedostatek přidané hodnoty – Obchody vyžadují, aby aplikace nabízela něco navíc

oproti pouhé webové verzi. To může být například offline režim, notifikace, integrace

s nativními funkcemi zařízení apod.

●​ Chybějící podpora pro nativní přihlášení – Apple vyžaduje podporu „Sign in with

Apple“, což aplikace zatím neimplementuje.

●​ Omezené testování a stabilita – Vydání aplikace vyžaduje důkladné testování na

různých zařízeních a verzích operačních systémů, což zatím nebylo plně dokončeno.

3.3.4 Alternativní způsoby distribuce

Vzhledem k problémům s publikací do oficiálních obchodů lze zvážit alternativní způsoby

distribuce aplikace:

●​ Expo Go – Aplikace může být testována a používána přes Expo Go, což umožňuje

jednoduchou distribuci bez nutnosti schvalování.

●​ PWA (Progressive Web App) – Webová aplikace Clisync může být upravena na PWA,

což umožní uživatelům ji přidat na domovskou obrazovku bez nutnosti stahování z

obchodu.

●​ Přímá distribuce APK (Android) – Uživatelé Androidu si mohou aplikaci stáhnout a

nainstalovat přímo z webové stránky.

●​ Enterprise distribuce (iOS) – Pro iOS lze využít podnikové certifikáty pro distribuci

mimo App Store.

21

4. AI ve webové aplikace
V rámci projektu Clisync byla implementována umělá inteligence (AI), která slouží k úpravě

textů zápisů psychologů. AI zajišťuje efektivní zpracování textových informací, které jsou

následně upravovány a vylepšovány podle specifických potřeb uživatelů. V této části

dokumentace jsou popsány klíčové aspekty výběru modelu, poskytovatelé AI a možnosti

implementace, včetně bezpečnostních opatření.

4.1 Výběr modelu
Při výběru modelu pro AI bylo třeba zvážit několik faktorů [16], které ovlivňují jeho

výkonnost, přístupnost a integraci do aplikace Clisync. Důležité je nejen vybrat správný typ

modelu, ale také rozhodnout o jeho poskytovateli, metodě nasazení a zajištění bezpečnosti.

4.1.1 Důležitá kritéria

Při výběru modelu pro úpravy textu byly zohledněny následující kritéria:

●​ Přesnost a kvalita generovaných textů – Model musí být schopen správně

analyzovat a upravit zápisy, přičemž by měl dodržovat správnou gramatiku a

zachovat význam textu.

●​ Rychlost a výkon – Pro efektivní používání v reálném čase je nezbytné, aby model

generoval texty rychle, bez výrazných prodlev.

●​ Možnosti přizpůsobení – Model by měl umožnit přizpůsobení specifickým potřebám

aplikace Clisync, zejména v oblasti terminologie používané psychology.

●​ Náklady na používání – Finanční náklady na použití modelu mohou být

rozhodujícím faktorem, zejména pokud se aplikace používá ve větším měřítku.

●​ Kompatibilita s API – Model by měl být snadno integrovatelný s webovou aplikací

běžící ve WebView, což zajišťuje jednoduchou komunikaci mezi aplikací a AI.

22

4.1.2 Poskytovatelé a možnosti

Existuje několik poskytovatelů AI, kteří nabízejí modely pro úpravu textu, generování

přirozeného jazyka a další pokročilé funkce. Mezi hlavní možnosti patří:

●​ OpenAI – Poskytovatel, který nabízí pokročilé modely pro generování textu jako

GPT-4, které jsou schopné nejen opravovat gramatiku, ale také přeformulovat a

vylepšit texty na základě specifických požadavků.

●​ Google Cloud AI – Nabízí různé modely pro analýzu a generování textu, které lze

přizpůsobit specifickým potřebám aplikace, včetně podpory pro různé jazyky.

●​ Microsoft Azure Cognitive Services – Poskytuje nástroje pro zpracování textu,

které zahrnují opravy gramatiky, analýzu sentimentu a další funkce, které mohou být

užitečné pro aplikaci zaměřenou na zpracování zápisů.

Každý z těchto poskytovatelů nabízí různé úrovně přizpůsobení, nákladů a podporovaných

funkcí, což ovlivňuje rozhodování o tom, který model bude pro aplikaci Clisync nejvhodnější.

4.2 Self-hosting
Další možností je self-hosting AI modelu [17], což znamená nasazení modelu na vlastním

serveru. Tento přístup má několik výhod:

●​ Kontrola nad daty – Umožňuje plnou kontrolu nad tím, jak jsou data zpracována a

ukládána, což je důležité pro zajištění ochrany soukromí uživatelů.

●​ Flexibilita – Self-hosting může poskytnout větší flexibilitu v oblasti přizpůsobení

modelu specifickým potřebám aplikace.

●​ Nižší dlouhodobé náklady – Při větším objemu zpracovávaných dat mohou být

náklady na používání externího poskytovatele AI vyšší než náklady na provoz

vlastního serveru.

4.2.1 Otevřené AI modely

Pro self-hosting AI modelu je ideální platforma Hugging Face [18], která nabízí širokou

škálu před trénovaných modelů pro různé úkoly strojového učení. Pro výběr správného

modelu pro práci s textem je nutné zhodnotit mnoho aspektů:

23

●​ Účel modelu – Určit, jaký konkrétní úkol má model vykonávat (např. sumarizace

textu, generování textu, analýza sentimentu, oprava gramatiky apod.).

●​ Jazyková podpora – Zkontrolovat, zda model podporuje jazyk(y), ve kterých bude

aplikace fungovat (např. čeština, angličtina).

●​ Velikost modelu – Vybrat model s vhodnou velikostí, která odpovídá požadavkům

na výkon a paměťové nároky aplikace. Větší modely obvykle poskytují lepší přesnost,

ale vyžadují více výpočetních prostředků. Velikost modelu je definovaná celkovým

počtem parametrů pomocí kterách byl natrénován. Menší modely se pohybují ve

stovkách milionů, větší kompetentnější v řádů stovek miliard parametrů.

●​ Přesnost a kvalita výsledků – Posoudit, jak kvalitní a přesné jsou výsledky modelu

při provádění požadovaných úkolů (např. jak dobře model generuje nebo opravuje

text).

●​ Licenční podmínky – Zajistit, že licenční podmínky modelu dovolují jeho použití v

komerční aplikaci, pokud bude aplikace určena pro širokou veřejnost nebo platící

uživatele.

●​ Efektivita využití zdrojů – Posoudit, jak náročný je model na výpočetní zdroje, jako

je CPU, RAM, a další hardware, aby byl provoz na serveru nebo mobilním zařízení

udržitelný.

4.2.2 Infrastruktura

Nasazení AI modelu na vlastní hardware představuje náročný úkol, který vyžaduje pečlivé

plánování a dostatečně silnou infrastrukturu. Celkové nasazení modelu je velmi komplexní,

neboť zahrnuje nejen výběr vhodného hardware, ale i konfiguraci serverů a správu

softwarového prostředí. Pro efektivní fungování AI modelů je nezbytné zajistit dostatečný

výpočetní výkon. To zahrnuje silný processor, dostatek RAM, protože modely jsou nahrávány

do paměti, aby mohly být okamžitě použity, a v případě náročnějších modelů je třeba také

velkého úložiště pro ukládání dat. Kromě toho, pro některé modely je nutné vybavení s

grafickými kartami (GPU), které zajišťují rychlé zpracování a zvyšují výkon při trénování a

inferenci modelů.

Jednodušší varianta nasazení modelu může vypadat následovně: na serveru s dostatečným

hardwarem běží linuxový operační systém, jako je například Debian nebo Ubuntu, který je

24

základem pro nasazení aplikace. Na tomto serveru je spuštěn Docker, což umožňuje snadnou

správu a izolaci jednotlivých komponent. V rámci Dockeru běží reverse proxy server (např.
Traefik nebo Nginx), který se stará o směrování požadavků mezi různými službami, a

následně samotný kontejner, který obsahuje instanci AI modelu. Pro hostování AI modelu z

platformy Hugging Face [18] lze využít jejich knihovnu Transformers, která umožňuje

snadné nasazení před trénovaných modelů a jejich integraci do aplikace.

Pro efektivní nasazení, správu a škálování AI modelů v rámci kontejnerů je možné využít

open-source projekt LitServe od Lightning.ai [19], který je optimalizován pro rychlou

implementaci a škálovatelnost modelů v produkčním prostředí. LitServe umožňuje

automatizované nasazení modelů v Docker kontejnerech a jejich správu, čímž výrazně

usnadňuje nasazení a umožňuje efektivní škálování podle požadavků na výkon. Tento přístup

zajišťuje nejen flexibilitu a snadnou správu, ale i efektivní využití výpočetních zdrojů.

LitServe poskytuje REST API bez složité konfigurace, což výrazně zjednodušuje integraci

a komunikaci s AI modelem v aplikacích.

25

Obrázek 1 Diagram infrastruktury

26

4.3 Bezpečnost
Bezpečnost je klíčovým faktorem při práci s AI modely, zejména v případě citlivých

informací, jakými jsou zápisy psychologů. Hlavní bezpečnostní aspekty zahrnují:

●​ Šifrování dat – Všechna data přenášená mezi klientem a AI serverem by měla být

šifrována, aby se zajistila ochrana před neoprávněným přístupem.

●​ Zabezpečení uživatelských informací – Infrastruktura by měla být navržena tak,

aby se nezpracovávaly citlivé osobní údaje bez souhlasu uživatele.

●​ Ochrana před zneužitím – Je nutné implementovat mechanismy, které zamezí

zneužití modelu pro generování nevhodného nebo škodlivého obsahu.

●​ Soulad s regulacemi – Je třeba zajistit, aby použití AI modelu splňoval všechny

právní požadavky týkající se ochrany osobních údajů, jako je GDPR v EU nebo HIPAA

ve Spojených státech.

Bezpečnostní opatření je nezbytné pečlivě naplánovat a implementovat, aby byla aplikace v

souladu s nejvyššími standardy ochrany dat.​

4.4 Implementace
Tato část dokumentace popisuje, jak byly implementovány různé AI funkce v aplikaci

Clisync, které psychologům usnadňují správu a práci s jejich zápisy. Funkcionality zahrnují

souhrn dokumentu a přepis zápisků. Převod textu na řeč (Text to Speech) a převod řeči na

text (Speech to Text) zatím nejsou implementovány.

V aplikaci je využito OpenAI API, jelikož vlastního self-hostingu AI modelu nebylo možné

dosáhnout. Implementované funkce tedy slouží jako showcase možností, které umělá

inteligence nabízí v kontextu práce s textovými záznamy psychologů.

4.4.1 Souhrn dokumentu

Souhrn dokumentu v aplikaci Clisync slouží k automatickému zkrácení a zvýraznění

klíčových informací v zápisech psychologa. Tato funkce využívá OpenAI API pro analýzu

textu a generování stručného přehledu hlavních bodů.

27

Výhody implementace:

●​ Rychlé získání přehledu o obsahu delších zápisů

●​ Zlepšení organizace a archivace poznámek

●​ Možnost zpětného nahlédnutí bez nutnosti číst celý text

Souhrn dokumentu je navržen tak, aby nezasahoval do původního textu, ale nabídl

přehledné shrnutí na základě AI analýzy.

4.4.2 Přepis zápisků

Přepis zápisků je klíčovou funkcí aplikace, která umožňuje psychologům upravovat a

přeformulovávat své poznámky. OpenAI API provádí analýzu textu a nabízí možnosti

stylistických úprav, korekcí gramatiky či formátování textu.

Hlavní vlastnosti přepisu:

●​ Oprava pravopisných a gramatických chyb

●​ Možnost přeformulování vět pro lepší srozumitelnost

●​ Automatické formátování textu pro přehlednější strukturu

Přepis je plně integrován do sekce zápisů v aplikaci Clisync, kde mohou psychologové své

poznámky snadno editovat a vylepšovat.

4.4.3 Text to speech

Funkce Text to Speech by umožňovala psychologům nechat si přečíst obsah zápisu nahlas.

Tato funkcionalita je užitečná zejména při revizi poznámek nebo při práci na více úkolech

současně.

Výhody implementace:

●​ Možnost poslechu textu místo jeho čtení

●​ Zvýšení dostupnosti pro uživatele s poruchami čtení

●​ Lepší soustředění na obsah zápisů

28

Tato funkcionalita může být zvážena pro budoucí verze aplikace, pokud bude poptávka ze

strany uživatelů.

4.4.4 Speech to text

Funkce Speech to Text, která by umožňovala převádět mluvený projev na psaný text, není v

aplikaci implementována. I když by mohla být užitečná pro rychlé zaznamenání

poznámek, nebyla zatím zahrnuta kvůli technickým a uživatelským požadavkům.

Potenciální výhody jejího budoucího nasazení:

●​ Možnost hlasového diktování poznámek

●​ Rychlejší zaznamenávání informací během konzultací

●​ Eliminace potřeby manuálního psaní zápisů

Tato funkcionalita může být zvážena pro budoucí verze aplikace, pokud bude poptávka ze

strany uživatelů.

29

5. Závěr
Cílem tohoto projektu bylo vytvořit mobilní aplikaci Clisync, která by pomohla psychologům

zefektivnit jejich administrativní práci a organizaci poznámek. Během vývoje bylo dosaženo

několika klíčových výsledků.

Podařilo se vytvořit funkční webovou aplikaci využívající moderní technologie jako React a

Next.js, která nabízí intuitivní rozhraní pro správu zápisků a organizaci práce psychologů.

Webová aplikace byla úspěšně implementována do mobilního prostředí pomocí technologie

WebView s využitím frameworku Expo, což umožnilo sdílení kódu mezi platformami a

zefektivnilo vývoj.

V rámci projektu byly implementovány dvě základní AI funkcionality – souhrn dokumentu a

přepis zápisků prostřednictvím OpenAI API. Tyto funkce demonstrují potenciál umělé

inteligence v oblasti zpracování a optimalizace textových záznamů psychologů. Původní

záměr self-hostingu AI modelu bohužel nemohl být realizován kvůli technickým a

infrastrukturním omezením, což vedlo k využití externího API jako kompromisního řešení.

Otázka self-hostingu AI modelů se ukázala jako komplexní problém vyžadující důkladnou

analýzu. Přestože self-hosting nabízí významné výhody v podobě lepší kontroly nad daty,

větší flexibility a potenciálně nižších dlouhodobých nákladů, jeho implementace představuje

značnou technickou výzvu. V průběhu projektu bylo zjištěno, že nasazení vlastních AI

modelů vyžaduje nejen důkladný výběr vhodného modelu z platformy jako je Hugging Face,

ale také robustní infrastrukturu s dostatečným výpočetním výkonem, RAM a úložištěm.

Realizace takového řešení by vyžadovala pokročilou konfiguraci serverů, Docker kontejnerů

a správu softwarového prostředí, což přesahovalo dostupné zdroje projektu.

Během vývoje bylo zjištěno, že publikace WebView aplikace do oficiálních obchodů App

Store a Google Play čelí významným překážkám, především kvůli požadavkům na nativní

funkcionalitu a přidanou hodnotu oproti webové verzi. Jako alternativa byla zvolena

distribuce prostřednictvím Expo Go a možnost přímé instalace APK pro Android.

Přestože některé plánované funkce jako Text to Speech a Speech to Text nebyly

implementovány, projekt poskytuje solidní základ, který může být v budoucnu rozšířen.

Aplikace v současné podobě splňuje základní cíl – usnadnit psychologům správu jejich

zápisků a organizaci práce prostřednictvím digitálního řešení.

30

Budoucí vývoj by mohl zahrnovat implementaci offline režimu, přidání nativních funkcí pro

lepší integraci s mobilními zařízeními, rozšíření AI funkcionalit o další nástroje pro práci s

textem a potenciálně i vlastní hosting AI modelů s důrazem na bezpečnost a ochranu

citlivých dat.

31

Literatura

[1] HELLER, Martin. What is Visual Studio Code? Microsoft’s extensible code editor. Online.

InfoWorld. 2022. Dostupné z:

https://www.infoworld.com/article/2335960/what-is-visual-studio-code-microsofts-exten

sible-code-editor.html. [cit. 2025-03-30].

[2] MIRO. What is Miro? Get to know our innovation workspace. Online. Miro. Dostupné z:

https://miro.com/what-is-miro/. [cit. 2025-03-30].

[3] GEEKSFORGEEKS. React Introduction. Online. Geeksforgeeks. 2025, 2025-01-28.

Dostupné z: https://www.geeksforgeeks.org/reactjs-introduction/. [cit. 2025-03-30].

[4] MATÉU.SH. What is the Virtual DOM in React? Online. Geeksforgeeks. 2024. Dostupné z:

https://www.freecodecamp.org/news/what-is-the-virtual-dom-in-react/. [cit. 2025-03-30].

[5] WIKIPEDIA. Next.js. Online. Wikipedia. 2025, 2025-03-25. Dostupné z:

https://en.wikipedia.org/wiki/Next.js. [cit. 2025-03-30].

[6] CEZAR, Felipe. Understanding All Types of Page Rendering in Next.js. Online. dev.to. 2024.

Dostupné z:

https://dev.to/felipecezar01/understanding-all-types-of-page-rendering-in-nextjs-1fbi. [cit.

2025-03-30].

[7] AHMED, Asim. What is Vercel and Why You Should Use It? Online. Fishtank. 2023.

Dostupné z: https://www.getfishtank.com/insights/what-is-vercel. [cit. 2025-03-30].

https://www.infoworld.com/article/2335960/what-is-visual-studio-code-microsofts-extensible-code-editor.html
https://www.infoworld.com/article/2335960/what-is-visual-studio-code-microsofts-extensible-code-editor.html
https://www.infoworld.com/article/2335960/what-is-visual-studio-code-microsofts-extensible-code-editor.html
https://miro.com/what-is-miro/
https://miro.com/what-is-miro/
https://www.geeksforgeeks.org/reactjs-introduction/
https://www.freecodecamp.org/news/what-is-the-virtual-dom-in-react/
https://www.freecodecamp.org/news/what-is-the-virtual-dom-in-react/
https://en.wikipedia.org/wiki/Next.js
https://en.wikipedia.org/wiki/Next.js
https://dev.to/felipecezar01/understanding-all-types-of-page-rendering-in-nextjs-1fbi
https://dev.to/felipecezar01/understanding-all-types-of-page-rendering-in-nextjs-1fbi
https://www.getfishtank.com/insights/what-is-vercel

[8] GEEKSFORGEEKS. Introduction to Tailwind CSS. Online. Geeksforgeeks. 2024,

2024-10-07. Dostupné z: https://www.geeksforgeeks.org/introduction-to-tailwind-css/.

[cit. 2025-03-30].

[9] DAISYUI. Introduction. Online. DaisyUI. 2024. Dostupné z:

https://daisyui.com/docs/intro/. [cit. 2025-03-30].

[10] MIGHTY. What Is a Native App? Online. Mighty. 2024. Dostupné z:

https://www.mightynetworks.com/resources/native-app. [cit. 2025-03-30].

[11] WIKIPEDIA. React Native. Online. Wikipedia. 2015, 2025-01-29. Dostupné z:

https://en.wikipedia.org/wiki/React_Native. [cit. 2025-03-30].

[12] GOSS, Thomas. Flutter vs Expo. Online. MobiLoud. 2024. Dostupné z:

https://www.mobiloud.com/blog/flutter-vs-expo. [cit. 2025-03-30].

[13] BUCK, Andrew. Native Apps vs Webview Apps - What's the Best Choice for Your Business?

Online. MobiLoud. 2025. Dostupné z:

https://www.mobiloud.com/blog/native-app-vs-webview-app. [cit. 2025-03-30].

[14] APPLE. App Review Guidelines. Online. Apple Developer. 2024, 2024-09-13. Dostupné z:

https://developer.apple.com/app-store/review/guidelines/. [cit. 2025-03-30].

[15] CITRUSBITS. Difference Between AppStore vs Google Play Store. Online. CitrusBits. 2017.

Dostupné z: https://citrusbits.com/difference-between-app-store-vs-google-play-store/.

[cit. 2025-03-30].

https://www.geeksforgeeks.org/introduction-to-tailwind-css/
https://daisyui.com/docs/intro/
https://daisyui.com/docs/intro/
https://www.mightynetworks.com/resources/native-app
https://www.mightynetworks.com/resources/native-app
https://en.wikipedia.org/wiki/React_Native
https://en.wikipedia.org/wiki/React_Native
https://www.mobiloud.com/blog/flutter-vs-expo
https://www.mobiloud.com/blog/flutter-vs-expo
https://www.mobiloud.com/blog/native-app-vs-webview-app
https://www.mobiloud.com/blog/native-app-vs-webview-app
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://citrusbits.com/difference-between-app-store-vs-google-play-store/

[16] SPHINX. How to Choose AI Model for Your Project? Online. Medium. 2024. Dostupné z:

https://medium.com/@sphinxshivraj/how-to-choose-ai-model-for-your-project-9ef5316df

da0. [cit. 2025-03-31].

[17] NADIY. What Are Self-Hosted AI Solutions? Online. Lizard Global. 2024. Dostupné z:

https://www.lizard.global/blog/what-are-self-hosted-ai-solutions-benefits-implementation

. [cit. 2025-03-31].

[18] HUGGINGFACE. Hugging Face. Online. 2023. Dostupné z: https://huggingface.co/. [cit.

2025-03-31].

[19] LIGHTNING AI. LitServe. Online. 2024. Dostupné z:

https://lightning.ai/docs/litserve/home. [cit. 2025-03-31].

Seznam obrázků, grafů, tabulek
Obrázek 1 Diagram infrastruktury……………………………………………………………. 26

https://www.citacepro.com/dok/How%20to%20Choose%20AI%20Model%20for%20Your%20Project?
https://medium.com/@sphinxshivraj/how-to-choose-ai-model-for-your-project-9ef5316dfda0
https://medium.com/@sphinxshivraj/how-to-choose-ai-model-for-your-project-9ef5316dfda0
https://www.lizard.global/blog/what-are-self-hosted-ai-solutions-benefits-implementation
https://www.lizard.global/blog/what-are-self-hosted-ai-solutions-benefits-implementation
https://huggingface.co/
https://lightning.ai/docs/litserve/home
https://lightning.ai/docs/litserve/home

	
	1. Úvod
	2. Použité technologie ve společné části
	2.1 Visual studio code
	2.2 Miro
	2.3 React
	2.4 NextJS
	2.5 Server side rendering
	2.6 Vercel
	2.7 Tailwind CSS
	2.8 Daisy UI

	3. Mobilní aplikace
	3.1 Výběr technologie
	3.1.1 Nativní aplikace
	3.1.2 React Native
	3.1.3 Flutter
	3.1.4 Expo

	3.2 Způsob Implementace
	3.2.1 Klasická aplikace
	3.2.2 WebView

	3.3 App Store a Google Play
	3.3.1 Požadavky na App Store (Apple)
	3.3.2 Požadavky na Play Store (Google)
	3.3.3 Důvody neúspěšné publikace aplikace
	3.3.4 Alternativní způsoby distribuce

	4. AI ve webové aplikace
	4.1 Výběr modelu
	4.1.1 Důležitá kritéria
	4.1.2 Poskytovatelé a možnosti

	4.2 Self-hosting
	4.2.1 Otevřené AI modely
	4.2.2 Infrastruktura

	
	4.3 Bezpečnost
	4.4 Implementace
	4.4.1 Souhrn dokumentu
	4.4.2 Přepis zápisků
	4.4.3 Text to speech
	4.4.4 Speech to text

	5. Závěr
	Literatura
	Seznam obrázků, grafů, tabulek

